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Introduction

� Objective: Numerically robust 
algorithm to compute derivatives of 
poles, zeros and residues

� Output will be used in Sylvester 
expansion solution of quadratic cost 
function for optimal output feedback

� Facilitates feedback design in large 
systems.

QZ review

� QZ historically used to solve 
generalized eigenvalue problem (GEP)

� In turn used to solve Ricatti 
Equations, compute transmission 
zeros, etc.

BwAw λ=
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Steps of QZ

� A is reduced to upper Hessenberg form 
while B is reduced to upper triangular form,

� A is reduced to quasi-triangular form while 
the triangular form of B is maintained

� the quasi-triangular matrix is reduced to 
triangular form and the eigenvalues are 
extracted

� the eigenvectors are obtained from the 
triangular matrices and transformed back 
into the original coordinate system

Building blocks of QZ

� QZ refers to the left and right unitary 
matrices Q and Z such that QAZ is 
quasi-triangular and QBZ is upper 
triangular

� Q and Z need not be explicitly 
formed, rather, Householder reflectors 
and Givens rotations are applied to 
submatrices of A and B.
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1
eHa ν=

Householder / Givens

� Householder finds:

� Such that

� Givens rotation:

H
uuIH −=

1
eHa ν=

Overall QZ

� Problem is sub-divided to reduce 
computational burden
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� Rotations are applied to pencil and its 
derivatives

Deflation

� zeros on the diagonal of B must 
deflated out the bottom of the pencil 
to preserve the correct derivative 
information. 

� When B initially has two or more 
zeros on the diagonal the deflation 
logic becomes somewhat more 
complicated. as shown below.
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Extracting the Eigenvalues

� Real eigs given by:

� Derivs by:

� Complex eigs from the algorithm:
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� Complex eigs algorithm continued

� and finally
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LTI System nomenclature

( ) ( ) dbaIc +−=
−1

ssF

� State Space

� Transfer Function

Batch Calculation of the Residues 
(distinct poles)

� Partial fraction expansion:

� Can be solved by finding common 
denominator, adding, and equating 
powers of s.
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� If we write the simultaneous set of 
equations in matrix form we get:

�ΞΞΞΞr=R, where:

� and

Xi(i,j) = sum(prod(combnk(−ps([1:j−1,j+1:n]),i−1),2)).

� that is:



5/12/2016

10

Batch Calculation of the Residues 
(repeated poles)

� Repeating the algebraic process, we discover that 
the corresponding column of the Ξ matrix can be 
built from the bottom up pretending that the 
system is lacking mk − j + 1 occurrences of the 
repeated pole. The top mk − j of said column will 
then be filled in with zeros.

Columns of ΞΞΞΞ corresponding to 
repeated pole:
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Derivatives of the Residues

� The batch equation is differentiated 
yielding:

� Unpacking the derivative of the ΞΞΞΞ
matrix, we get:
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� System numerator polynomial is 
found from:

� Thus derivatives of the numerator 
coefficients from the pencil

sum(prod(combnk(-ps([1:j-1,j+1:n]),m),2))*(-dps(j))
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Numerical Examples

Transmission Zero Calculation
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Residue Derivatives
� For the system shown previously
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Sylvester Based Algorithm for OOF:

� Sylvester’s expansion

eigenvalue

residue (num polynomial)

� Is substituted for the system 
dynamics in the quadratic cost 
function

� I.E.

� Which is re-written
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� Which is then integrated closed-form

� Where

� and the nk terms come from the PFE

Characteristic polynomial of A

mk occurences of
λ are deconvolved
from char poly

Gradient of the cost function

� quotient rule
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� Derivative of matrix polynomial leads 
to first / last algorithm:

% first term:

F = Z;

L = dA;

Z = Z + (F + L)*Psi(p-1);

% subsequent terms:

for q = p-2:-1:1

F = A*(F + L);

L = L*A;

Z = Z + (F + L)*Psi(q);

end

� Map eigenvalue derivatives to 
derivatives of char poly coeffs:

� Is just one term in the polyderm 
expansion.
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Result: Non-gradient search

Results: Gradient search
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Open Issues

� Is the differentiated QZ stable?

� Operations counts

� Actual repeated eigenvalue cases that 
are not defective / overly contrived?
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